On the Syntheses and Photochemical Properties of Novel Pyrrolizinone Derivatives as Photosensitizers

Rupert Bauer⁴, Günter Heisler^b, and Christian Königstein⁴

Technical University of Vienna, 'Department of Physical Chemistry and "Department of Organic Chemistry, Getreidemarkt 9, A - 1060 Wien, Austria

(Received in Germany 5 January 1993)

*Abstract : The syntheses of the pyrrolizinone derivatives 8H-6-methyl-7-phenylthienof2,3-b]-pyrrolizin-8*one (1), *10H-6,7,8,9-tetrahydro(1)benzothieno*[2,3-b]pyrrolizin-10-one (2), 8H-6-phenylthieno[2,3*b*]pyrrolizin-8-one (3), 8H-methylthieno[2,3-b]pyrrolizin-8-one (4), are described. In contrast to *benzophenone, compounds* 1 - 4 absorb in the visible light region $(e^{436 \text{ nm}} = 400, 420, 450, \text{ and } 320 \text{ l}$ *mot¹* cm⁻¹ for compounds 1 - 4, respectively). 9-Fluorenone as well as compounds 1 - 4 were able to *reduce methylviologen in the presence of 2-propanol under irradiation with UV light* $(A > 280$ *nm). Compounds* 1 - 4 showed an interesting fluorescence behavior depending on solvent and on Ph - value, *which will be discussed in detail.*

INTRODUCTION

Different approaches for the conversion and storage of solar energy have been made by several authors¹⁻¹⁰. Beside semiconductors¹¹⁻¹² the use of light absorbing compounds i.e. sensitizers in combination with several catalysts has attracted much attention as basic compounds for conversion of light energy¹⁻¹⁶. Necessary demands for a useful sensitizer can be described as follows : strong absorption and sufficient long lifetimes of the excited states in order to make charge (energy) transfer reactions possible. Beside organometallic complexes^{15,16} like Ru(bpy), Cl, also ketones like benzophenone or fluorenone^{13,14} have been investigated as photosensitizers. For example benzophenone is able to reduce 1,1'-dimethyl-4,4'-bipyridinium chloride (= methylviologen = MV^{2+}) via a radical mechanism in the presence of 2-propanol upon irradiation with UV-light to give blue radicals¹³:

$$
\underset{Q}{\bigodot} \bigodot \bigodot \underset{QH}{\overset{\text{G}_{0}}{\bigodot}} \xrightarrow{\text{hv}} \bigodot \underset{QH}{\overset{\text{G}_{1}}{\bigodot}} \bigodot \overset{(T_{1})}{\bigodot}, \qquad \underset{QH}{\overset{\text{G}_{1}}{\bigodot}} \qquad (1)
$$

$$
\bigodot^{c} \bigodot^{c} \bigodot^{(T_{1}) + c_{H_{3}} \bigodot^{(H)}_{c_{H_{3}} \longrightarrow c_{H_{3}}} \bigodot^{c_{H_{1}} \bigodot^{(H)}_{c_{H_{3}} \longrightarrow c_{H_{3}} \bigodrod^{(H)}_{c_{H_{3}} \longrightarrow c_{H_{3}} \bigodrod^{
$$

$$
\bigcirc \qquad \qquad \begin{array}{ccc}\n & \uparrow & \uparrow & \uparrow \\
& \uparrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow \\
& \
$$

$$
P^2 \text{ and } P^2 \text{ and
$$

$$
\text{S}^{\text{pt}}_{\text{c}} \text{C}^{\text{pt}}_{\text{c}} \text{C}^{\text{tr}}_{\text{c}} \text{C}^{\text{tr}}_{
$$

Scheme 1.

Addition of heterogenous catalysts such as platinum or palladium to such solutions led to the formation of hydrogen (4) even in the absence of methyl viologen¹⁴. Methyl viologen enlarges quantum yields (5). Since benzophenone did not absorb in the visible region, its use for practical applications for the storage of solar light is extremely limited. It was our aim to find fluorenone analogues with stronger absorptions in the visible.

RESULTS AND DISCUSSION

1. *WMS - @ectroscopy. The* UV / VIS spectra for compounds 1 - 4 are shown in Fig. 1. In 2-propanol compound 2 gave two absorption maxima at 289 and 325 nm (see TABLE I), while compound 4 showed two maxima at 274 and 320 nm. This bathochromic shift can be attributed to hyperconjugation effects of alkyl substituents. Comparing the absorption properties of compound 3 with compound 4 (see Fig.1), a bathochromic shift of maxima can be observed with compound 3, which can be explained by the enlargement of the conjugated system.

In contrast to benzophenone, compounds 1 - 4 had absorption maxima at 330 nm (ϵ_{max} : see TABLE I). The higher absorption coefficients of compounds **1 -** 4 in the visible light region in contrast to 9-fluorenone can be attributed to the zwitter ionic mesomeric structures¹⁸ of compounds 1 - 4 (see Scheme 2) These mesomeric forms were attributed to be responsible for the absorbance at 450 nm.

$$
\frac{1}{\sqrt{n}}\sum_{n=1}^{n}\frac{1
$$

Scheme 2. Zwitter ionic structures of compounds $1 - 4.$

Fig.1 UV /VIS absorption spectra of compounds $3 - 4$.

sensitizer compound bezophenone	solution			ϵ [l mol ⁻¹ cm ⁻¹] at the maximum (nm)		
	I,A		(207) 15500 (257) 16500			(325) 1000
fluorenone	5, A		(205) 11000 (255) 25000		(298) 2000	(330) 1800
1	6,A		(204) 16000 (242) 20000		(280) 8000	(331) 6500
	4,A		(210) 19600 (242) 25500		(280) 11600	(333) 8300
2	4, A		(204) 11500 (248) 14000		(289) 8610	(320) 6360
	2, A		(204) 11500 (250) 20000		(289) 11500	(325) 10000
3	3, A		(204) 16300		(273) 21000	(310) 17500
	2, A		(210) 17300		(270) 22600	(310) 23300
4	3, A		(204) 11500 (250) 21200		(276) 12000	(325) 11000
	2, A		(205) 8000 (250) 20000		(274) 10000	(320) 9000

TABLE I. UV Data (200 - 350 nm) of compounds 1 - 4.

¹ water, ² 2-propanol, ³ 2-propanol : water = 2 : 3, ⁴ 2-propanol : water = 3 : 2, ⁵ 2propanol : water = 4 : 1, $^{\circ}$ propanol, ' methanol, $^{\circ}$ c = 10⁻³ mol/l, $^{\circ}$ c = 7x10⁻⁴ mol/l

Furthermore absorption spectra of **compounds** 1 - 4 were found to depend on pH and solvent. Alkaline solutions of compounds **1 -** 4 showed higher absorptions in the visible light region at about 400 nm due to different contributions of zwitter ionic mesomeric forms (e.g. compound 3 see Fig.2):

Fig.2 UV/VIS absorption spectra of compound 3 at different pH values ($-$: pH = 2, -- $pH = 5.5,$ ----- : $pH = 12$).

sensitizer compound	solution	ϵ [l mol ⁻¹ cm ⁻¹] at the maximum (nm)	436 nm		
1	6,C	(450) 420	400		
	4, A	(460) 480	410		
2	4,A	(420) 400	390		
	2, A	(458) 460	420		
3	3, A	(466) 420	370		
	2, A	(460) 500	450		
4	3, A	(448) 352	337		
	2, A	(450) 350	320		

TABLE II. UV / visible data of compounds **1 -** 4 (350 - 500 nm)

² 2-propanol, ³ 2-propanol : water = 2 : 3, ⁴ 2-propanol : water = 3 : 2, ⁵ 2-propanol: water = 4 : 1, 6 propanol, 7 methanol, 6 c = 10 3 mol/l, 8 c = 7.10 4 mol/l, 6 c = 5.10 3 mol/l

UV spectra of compounds $1 - 4$ were quite similar in different solvents, but visible spectra $(A > 350$ **nm)** showed higher absorption coefficients in alcoholic solutions (2-propanol) then in aqueous solutions for compounds 2 and 3 (see Table II).

2. *Fluorescence properties.* Exciting alcoholic solutions (2-propanol / water 3 : 2) of compound 2 with $A^{EX} = 375$ nm, fluorescence light can be observed with its maximum at $A^{EM} = 439$ nm (and 2 shoulders at 520 and 560 nm). Monitoring the fluorescence intensity at $A^{BM} = 440$ nm, and scanning the exciting light from 200 to 420 nm, one maximum of excitation was found at 375 nm :

Fig.3 Fluorescence- $(-,-,-, A^{EX} = 375 \text{ nm})$ and excitation spectra $(-,-, A^{EM} = 439 \text{ nm})$ of compound 2 in water / 2-propanol 2 : 3. concentration : 10^3 mol 1^1 .

Exciting compound 2 with $\lambda^{BX} = 388$ nm, fluorescence maxima were observed at $\lambda^{BM} = 448$ and 560 nm, indicating that the shoulders at 520 and 560 nm (see Fig.3) are two more fluorescence maxima. Excitation of 1 with $A^{EX} = 450$ nm led to fluorescence at 530 nm, similar to compound 1, but with less intensity.

Using only 2-propanol as solvent, fluorescence maxima were found at 440 and 520 nm (excited with $A^{EX} = 372$ nm).

Exciting compound 3 (solvent : 2-propanol/water 2 : 3) with light of $A^{EX} = 375$ nm (similar to compound **1)** led to fluorescence emission at 430 nm (maximum) with a shoulder at 510 nm (see Fig.4). Exciting compound 3 with $A^{EX} = 450$ nm gave light emission with its maximum at 540 nm. Using only 2-propanol as solvent led to a decrease of fluorescence intensity :

Fig.4 Fluorescence and excitation spectra of compound 3; concentration : $10³$ mol I⁻¹; solvent : 2-propanol/water 2 : 3 () and 2-propanol (- - -).

Investigations of the fluorescence properties of compound **1** in water/2-propanol3 : 2 resulted in one intensive fluorescence maximum at 503 nm with its excitation maximum at 453 nm (see Fig.5 and Table III).

Studying the fluorescence behavior of compound **1** in 1-propanol or acetonitrile (see Table II), fluorescence maxima with less intensities could be observed at about 530 nm.

sensitizer compound	concentration [mol/l]	λ^{EX} [nm]	λ^{EM} [nm]	I [a.u.]	
1 ²	10 ³	453	503	375	
1 ⁴	10 ³	393	530	3	
1 ⁵	10^{-3}	400	531	12	
2 ²	10^{-3}	375	439	323	
		375	525	155	
		389	560	250	
		450	533	63	
2^3	10^{-3}	372	520	57	
		391	510	70	
		391	445	56	
3 ¹	10 ³	375	429	196	
		450	540	36	
3^3	10 ³	370	428	128	
4 ¹	10 ³	373	465	68	
		450	525	43	
4 ³	$10-3$	363	460	18	

TABLE III. Fluorescence data of compounds **1 -** 4.

 1 2-propanol / water 2:3, 2 2-propanol / water 3:2, 3 2-propanol, 4 propanol, ⁵ acetonitrile.

The fluorescence properties of compound 4 showed a similar behavior according to the other pyrrolizinone derivatives. Exciting compound 4 with $\lambda^{BX} = 373$ nm, the maximum of fluorescence intensity was found at 465 nm, where a higher intensity could be observed in solutions of mixtures of 2-propanol/water (2:3). Excitation with $\lambda^{EX} = 450$ nm gave another fluorescence maximum at 525 nm (also seen as shoulder in Fig.6).

The smaller fluorescence intensities found for compound **1 -** 4 in alcoholic solutions was attributed to quenching effects of the organic solvent.

Fig.5 Fluorescence (\longleftarrow , A^{EX} = 453 nm) and excitation (\longleftarrow \longleftarrow , A^{EM} = 503 nm) spectra of compound 1 in 2-propanol / water = $2:3$, concentration : $10³$ mol $1¹$.

Fig.6 Fluorescence (A^{EX} = 373 nm) and excitation spectra (A^{EM} = 465 nm) of compound 4; concentration : 10^3 mol 1^4 ; solvent : \longrightarrow : 2-propanol / water = 2 : 3, \cdots - : 2-propanol.

3. *Irradiation Experiments.* Irradiation of solutions containing a sensitizer (i.e. compound **1 -** 4), 2-propanol, and methyl viologen with light $\lambda > 280$ nm, led to the formation of reduced viologen radicals. The reaction rates were found in the order of $1 > 2 > 3 > 4$. Reduction of methylviologen (in the presence of 2-propanol and compound **1 -4)** was not possible, **when the solutions were irradiated with light** $\lambda > 400$ **nm.**

CONCLUSIONS

As absorptions and fluorescence measurements have shown, compounds 1 - 4 possess sufficient high absorbances **in the visible light region, and gave** fluorescence maxima, when excited both with near UV light and visible light. Compound 1 had the highest **fluorescence intensity** in the visible and gave the best rate for the MV^{2+} - reduction, too. However, the attempt to use compounds $1 - 4$ as sensitizer for the visible region for the **reduction of methyl viologen** failed.

EXPERIMENTAL DETAILS

Melting points (uncorrected) : Kofler microscope; the nuclear magnetic resonance $(^1H-n,m,r.)$ spectra were recorded with a Perkin Elmer R 12 A, 60 MHz (all data in ppm, standard : TMS; s = singlet, m = multiplet, $sh = signal heap$;

Microelementar analysis (MEA) were carried out by the Institute of Physical Chemistry, University of Vienna. For all measurements twice distilled water was used. All experiments were performed at room temperature.

Experimental details of spectroscopy, fluorescence, and irradiation experiments were described elsewhere²⁶.

Syntheses

The new thieno[2,3-b] pyrrolizinone derivatives 1 - 4 were prepared¹⁷⁻²⁵ according to scheme 3 :

Scheme 3 Syntheses of compounds 1 - 4

Ethyl-2-(1-pyrrolyl)-4-phenyl-5-methylthiophen-3-carboxylate (1a)

58g (0.422 mol) 2,5-dimethoxy tetrahydrofuran were added to a solution of 57g (0.218 mol) ethyl-2-amino-4phenyl-5-methylthiophen-3-carboxylate²⁴, dissolved in 500 ml acetic acid. After refluxing at 100 - 110°C for 8 min, the solution was poured on ice and was made alkaline with KOH. This solution was extracted with ether. The organic part was washed with water and dried over $Na₂SO₄$. The raw product was distilled at 154°C $10³$ Torr. Yield (80%) : 53.3 g, m.p. : 45-47°C. - MEA : calc. C, 69.43%; H, 5.50%; N, 4.49% found C, 68.90%; H, 5.69%; N, 4.29%. - 'H-n.m.r. : 7.30 ppm (m,5H), 6.90 ppm (m,2H), 6.26 ppm (m,2H), 3.93 ppm (q,2H), 2.26 ppm (s,3H), 0.87 ppm (t,3H).

2-(1-Pyrrolyl)-4-phenyl-5-methylthiophen-3-carboxylic acid (1b)

50 g (0.161 mol) ethyl-2-(1-pyrrolyl)-4-phenyl-5-methylthiophen-3-carboxylate(1a) and 44 g KOH were heated under reflux for 45 min in 380 ml ethanol. The reaction mixture was poured in water and acidified with HCl. The aqueous solution was extracted with ether, the ethereal solution was dried with $Na₂SO₄$. The crude product was recrystallized from cyclohexane/ether $(= 1:1)$. Yield (90%) : 41 g, m.p.: 153-154°C. - MEA: calc. C, 67.82%;H,4.62%;N,4.94%;foundC,67.83%;H,4.74%;N,4.91%.-'H-n.m.r.:7.35ppm(m,5H),6.91 ppm (m,2H), 6.30 ppm (m,2H), 2.25 ppm (s,3H), 10.77 ppm (s,broad,lH).

N, N -Dimethyl-2- $(1$ -pyrrolyl)-4-phenyl-5-methylthiophen-3-carboxamide $(1c)$

16.7 (80 mmol) g PCl, were added in small portions to a solution of 300 ml abs. benzene containing 20 g (80 mmol) 2-(1-pyrrolyl)-4-phenyl-5-methyl-thiophene-3-carboxylicacid **(lb)** and stirred for 30 min. This solution was added dropwise to 100 ml cooled N,N-dimethylamine (60% in water) - the temperature should not exceed 30°C - and stirred for 1 hour. The reaction mixture was poured in water and was extracted with ether, the organic layer was dried with $Na₂SO₄$. The crude product was recrystallized from cyclohexane. Yield (90%) : 19.7 g, m.p.: 115-116°C. - MEA : talc. C, 69.60%; H, 5.80%; N, 9.02; found C, 69.60%; H, 5.93%; N, 8.95%. - 'H-n.m.r. : 7.30 ppm (m,5H), 6.91 ppm (m,2H), 6.21 ppm (m,2H), 2.74 ppm (s,3H), 2.55 ppm $(s, 3H)$, 2.34 ppm $(s, 3H)$.

8H-6-Methyl-7-phenylthienol2.3-bloyrrolizin-8-one (1)

11 g (35.5 mmol) N,N-Dimethyl-2-(1-pyrrolyl)-4-phenyl-5-methylthiophen-3-carboxamide(1c) was dissolved in 60 ml POCl₃ and stirred for 19 h at 90° C. Then the reaction mixture was poured on ice, was made alkaline with KOH, and was extracted with CHCl₁. The organic layer was washed with water and dried with Na₂SO₄. The raw product was chromatographed on a column (length 29 cm, dia. 1.7 cm, filled with silica gel 60, 0.040-0.063 mm, 230-400 mesh ASTM, eluent : benzene). Recrystallization from 2-propanol yielded (42.5%) 4 g colorless crystals; m.p.: 140-141°C. - MEA : talc. C, 72.42%; H, 4.18%; N, 5.28%; found C, 72.13%; H, 4.28%; N, 5.23%. - ¹H-n.m.r.: 7.39 ppm (m,5H), 6.69 ppm (m,1H), 6.53 ppm (m,1H), 6.03 ppm (m,1H), 2.30 ppm (s,3H).

$Ethvl-2-(1-pvrrolvl)-4.5.6.7-tetrahvdrobenzo(b)thiophen-3-carboxylate (2a)$

26 g (0.197 mol) 2,5-Dimethoxytetrahydrofuran was added to a solution of $23.3g$ (0.104 mol) ethyl ester of 2 -amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid²⁴, dissolved in 100 ml acetic acid. After refluxing at 100 - 110°C for 5 min, the dark brown solution was poured on ice, made alkaline with KOH and extracted with ether. The organic part was washed with water and dried with Na₂SO₁. For purification the raw product was distilled at 130° C / 10^3 Torr. Yield (85%) : 24.4 g. - MEA : calc. C, 65.43%; H, 6.22%; N, 5.09%; found C, 65.92%; H, 6.40%; N, 5.23%. - 'H-n.m.r. : 6.75 ppm (m,2H), 6.20ppm (m,2H), 4.08 ppm $(q, 2H)$, 2,70 ppm (sh, 4H), 1.80 ppm (sh, 4H), 1.10 ppm (t, 3H).

2-(1-Pyrrolyl)-4.5.6.7-tetrahydrobenzo[b]thiophen-3-carboxylic acid (2b)

35 g KOH and 33 g (0.12 mol) ethyl-2-(1-pyrrolyl)-4,5,6,7-tetrahydrobenzo[b]thiophen-3-carboxylate(2a) were dissolved in 170 ml ethanol at 50°C. The precipitate was dissolved in water, acidified with conc. Hcl and extracted with ether. The organic part was washed with water and dried with Na_2SO_4 . After removing the ether, the precipitate was recrystallized from cyclohexane. Yield (94%) : 27.9 g, m.p.: 172°C. - MEA : talc. C, 63.13%; H, 5.30%; N, 5.66%; found C, 63.15%; H, 5.34%; N, 5.63%. - 'H-n.m.r. : 11.00 ppm (s,broad, lH), 6.81 ppm (m,2H), 6.21 ppm (m,2H), 2,70 ppm (sh, 4H), 1.80 ppm (sh, 4H).

N.N-Dimethyl-2-(1-pyrrolyl)-4.5.6.7-tetrahydrobenzo(b)thiophen-3-carboxamide(2c)

19.2 g (92 mmol) PCl, was added in small portions to a solution of 100 ml abs. benzene containing 21.4 g (87) mmol) 2-(1-pyrrolyl)-4,5,6,7-tetrahydrobenzo[b]thiophen-3-carboxylic acid (2b) and stirred for 30 min. This solution was added dropwise to 100 ml cooled N,N-dimethylamine (60% in water) below 30°C and stirred for 1 h. The reaction mixture was poured in water and was extracted with ether, the organic part was washed with water and dried with Na₂SO₄. After removing the solvent, the raw product was purified by distillation ($p =$ 10³ torr, 130-180°C). Yield (94%) : 22.4 g, m.p.: 99-100°C. - MEA : calc. C, 65.66%; H, 6.61%; N, 10.21%; found C, 65.72%; H, 6.74%; N, 10.18%. - 'H-n.m.r. : 6.88 ppm (m,2H), 6.28 ppm (m,2H), 3.00 ppm $(s, 3H)$, 2.90 - 2.32 ppm $(s + sh, 7H)$, 1.86 ppm $(sh, 4H)$.

10H-6.7.8.9-Tetrahydrol 11benzothienol 2.3-blovrrolizin-10-one (2)

6.6 g (24 mmol) N,N-Dimethyl-2-(1-pyrrolyl)-4,5,6,7-tetrahydrobenzo[b]thiophen-3-carboxamide (2c) were dissolved in 100 ml abs. 1,2-dichloroethane. To this solution 21.6 g (142 mmol) POCl, were added and the solution was stirred for 12.5 h at 85°C. The reaction mixture was poured on ice, made alkaline with KOH and extracted with CHCl₃. The organic part was washed with water and dried over Na_2SO_4 . After removing the solvent, the residue was dissolved in ether and treated with activated carbon. The raw product was recrystallized from 2-propanol. Yield (80%) : 4.4 g orange crystals, m.p.: 164-165°C. - MEA : talc. C, 68.10%; H, 4.83%; N, 6.12%; foundC, 68.19%; H, 4.86%; N, 6.08%. -'H-n.m.r. : 6.72ppm (m,lH),6.58 ppm (m,lH), 6.10 ppm (m,lH), 2.69 ppm (sh,4H), 1.90 ppm (sh,4H).

Ethyl-2-(1-pyrrolyl)-5-phenylthiophen-3-carboxylate (3a)

 $8.9 g$ (67 mmol) 2,5-Dimethoxy tetrahydrofuran were added to a solution of 15.4 g (0.218 mol) ethyl-2-amino-4-phenyl-5-methylthiophen-3-carboxylate²⁴, dissolved in 100 ml acetic acid. After refluxing at 100 - 110°C for 8 min, the solution was poured on ice and made alkaline with KOH and extracted with ether. The organic part was washed with water and dried over Na₂SO₄. The raw product was distilled (150-200°C, p = 10^{-3} Torr). Yield (95%) : 17.6 g, m.p.: 68-70°C. - MEA : calc. C, 68.66%; H, 5.08%; N, 4.71%; found C, 68.45%; H,5.24%;N,4.71%. -'H-n.m.r.:7.70-7.20ppm(sh,6H),6.97ppm(m,2H),6.30ppm(m,2H),4.25ppm (q,2H), 1.25 ppm (t,3H).

N-Methvl-N-phenvl-2-(1-pyrrolyl)-5-phenvlthiophen-3-carboxvlamide (3b)

3.4 g (23.9 mmol) Methyl iodide was added slowly to 0.6 g magnesium in 15 ml abs. ether (Grignard reaction). 2.5 g (24 mmol) N-Methylaniline, dissolved in 10 ml abs. ether, was added to the Grignard solution. The mixture reacted violently. After the end of the reaction, 3.5 g (12 mmol) ethyl-2-(l-pyrrolyl)-5-phenylthiophen-3-carboxylate **(3a),** dissolved in 60 ml abs. ether were added during 10 min, and stirred for further 20 min. Then 30 ml water were added slowly to the reaction mixture. The reaction mixture was acidified with 2n Hcl (to dissolve the basic magnesium salts). The aqueous solution was extracted with ether. After evaporation the raw product was purified by distillation (p = 5.10⁴ Torr, 110-160°C). Yield (90%) : 3.8 g, m.p. 96-97°C. -MEA: calc. C, 73.72%; H, 5.06%; N, 7.82%; found C, 72.89%; H, 5.14%; N, 7.71%. - ¹H-n.m.r.: 7.60 -7.00 ppm (sh,9H), 6.80 - 6.50 ppm (sh,4H), 6.28 ppm (m,2H), 3.32 ppm (s,3H).

gH-6-Phenvlthienol2.3-blovrrolixin-8-one (3)

2.1 g (5.9 mmol) N-Methyl-N-phenyl-2-(1-pyrrolyl)-5-phenylthiophen-3-carboxamide (3b) were dissolved in 20 ml abs. 1,2dichlomethane. To this solution 5 g (32.57 mmol) POCl, were added and stirred for 35 h at 85°C. The reaction mixture was poured on ice, made alkaline with KOH and extracted with CHCl,. The organic part was washed with water and dried over $Na₂SO₄$. After removing the solvent, the precipitate was extracted with ether. The ethanol solution was treated with activated carbon. The raw product was purified by sublimation in vacuo ($p = 10³$ Torr, 150-200°C). Yield (75%) : 1.1 g orange crystals, m.p.: 152-154°C. -MEA : calc. C, 71.69%; H, 3.61%; N, 5.57%; found C, 71.53%; H, 3.74%; N, 5.55%. - 'H-n.m.r. : 7.60 -

7.20 ppm (m,5H), 7.12 ppm (s,1H), 6.81 ppm (m,1H), 6.66 ppm (m,1H), 6.15 ppm (m,1H).

Ethyl-2- $(1$ -pyrrolyl)-5-methylthiophen-3-carboxylate $(4a)$

51 g (0.386 mol) 2,5-Dimethoxytetrahydrofuran were added to a solution of 48 g (0.259 mol) ethyl-2-amino-5methylthiophen-3-carboxylate $[24]$, dissolved in 250 ml acetic acid. After refluxing at 100 - 110°C for 8 min, the dark brown solution was poured on ice and made alkaline with KOH. This solution was extracted with ether. The organic part was washed with water and dried over Na₂SO₄. For purification the raw product was distilled at 98°C / 10^3 Torr. Yield (87%) : 53.3 g. - MEA : calc. C, 61.25%; H, 5.57%; N, 5.95%; found C, 60.98%; H, 5.75%; N, 5.87%. - 'H-n.m.r. : 6.99 ppm (lH), 6.82 ppm (m,2H), 6.21 ppm (m,2H), 4.12 ppm (q,2H), 2.35 ppm (3H), 1.13 ppm (t,3H).

$2-(1-Pvrrolv)$ -5-methylthiophen-3-carboxvlic acid (4b)

43.3 g (0.184 mol) Ethyl-2-(l-pyrrolyl)-5-methylthiophen-3-czuboxylate (4a), and 60.8 g KOH were refluxed for 1 h in 250 ml (50%) aqueous methanol. The reaction mixture was poured on ice, acidified with conc. HCl, and extracted with ether. The organic part was washed with water and dried over Na₂SO₄. After removing the solvent the raw product was recrystallized from 2-propanol. Yield (90%) : 34.2 g, m.p. 130-131°C; - MEA : talc. C, 57.95%; H, 4.28%; N, 6.76%; found C, 58.11%; H, 4.46%; N, 6.75%. - 'H-n.m.r. : 10.62 ppm (s,broad,lH), 7.09 ppm (lH), 6.98 ppm (m,2H), 6.25 ppm (m,2H), 2.41 ppm (3H).

$N-Methyl-N-phenvl-2-(1-pvrrolvl)-5-methv lthiophen-3-carboxvamide (4c)$

1.6 (7.6 mmol) g PCI, were added in small portions to a solution of 25 ml abs. benzene containing 1.5 g (80) mmol) 2-(l-pyrrolyl)-5-metbylthiophen-3-carboxylic acid **(4b)** and stirred for 1 h. This solution was added dropwise, below 3O"C, to 15 ml cooled benzene, containing 1.9 g (18 mmol) N-methylaniline and stirred for 5 min. The reaction mixture was poured on water. After extraction with ether, the organic solution was washed with aqueous Hcl and water and then dried over Na₂SO₄. The raw product was purified by distillation (p = 5.10' Torr, llO-160°C). Yield (98%) : 2.1 g. - MEA : talc. C, 68.89%; H, 5.44%; N, 9.45%; found C, 67.90%; H, 5.45%; N, 9.24%. - 'H-n.m.r. : 7.40 ppm (s,lH), 7.20 - 7.00 ppm (m,3H), 6.75-6.40 ppm $(\text{sh},4H)$, 6.20 ppm $(m,2H)$, 3.29 ppm $(s,3H)$, 2.35 ppm $(s,3H)$.

8H-Methylthieno^{[2}.3-b]pyrrolizin-8-one (4)

2 g (6.5 mmol) N-Methyl-N-phenyl-2-(l-pyrrolyl)-5-methylthiophen-3-carboxamide (4c) was dissolved in 50 ml abs. 1,2-dichloroethane. To this solution 5 g (36.2 mmol) POCl, were added and the solution was stirred for 10 h at 85°C. The reaction mixture was poured on ice, made alkaline by KOH and extracted with CHCI,. The organic layer was washed with water and dried over $Na₂SO₄$. After removing the solvent, the residue was extracted with ether. The organic part was treated with activated carbon. The raw product was recrystallized from 2-propanol. Yield (78%) : 1 g, orange crystals, m.p.: 118-119°C. - MEA : talc. C, 63.46%; H, 3.73%; N, 7.40%; found C, 63.19%; H, 3.83%; N, 7.42%. - 'H-n.m.r. : 6.72 ppm (m,lH), 6.58 ppm (m,2H), 6.08 ppm (m,lH), 2.39 ppm (s,3H).

Acknowledgement : We would like to thank Prof. Dr. Karl Eichinger (Inst. of Organic Chemistry) and Prof. Dr. Osman El Dusouqui for stimulating discussions and the 'Fonds zur Förderung der Wissenschaftlichen Forschung' (Project number 8346-CHE) and the 'Hochschuljubiläumsstiftung der Stadt Wien' for their financial support.

REFERENCES

- 1. E. Amouyal, P. Koffi, J. *Photo&m.* **1985, 29,** 227.
- 2. J. Kiwi, M. Griitzel, *Helv. Chim. Acta.* **1979,** 61, 2720.
- 3. 0. Johanson, A. Launikonis, J. W. Lcder, A. W.-H. Mau, W. H. F. Sasse, J. D. Swift, D. Wells, *Aust. J. Chem.* **1981**, 34, 981.
- 4. **0.** Johanson, A. **Launikonis,** J. W. Loder, A. W.-H. Mau, W. H. F. Sasse, J. D. Swift, D. Wells, *Aust.J. Chem.* **1981**, 34, 2347.
- 5. **A. Launikonis,** J. W. Loder, A. W.-H. Mau, W. H. F. Same, L. A. Summers, D. Wells, *Aust.J.Chem. 1982, 35, 1341.*
- 6. M. Griitzel, *J. Chem. Sot. Chem. Comm.* **1979,** 1137.
- 7. M. Griitzel, *J. Phys. Chem.* **1980,** *84, 2551.*
- 8. A. Harriman, *J. Photo&m.,* **1985, 29, 139.**
- 9. **R.** Batter, C. KGnigstein, *J. Photo&em. Photobiol. A:Chem.* **1991, 59, 61.**
- 10. **R.** Batter, C. KGnigstein, Int. *J. Hydrogen Energy,* **1993,18, 205.**
- 11. **M. Ashokkumar, P. Maruthamuthu,** *Int. J. Hydrogen Energy* **1991**, 16, 591.
- 12. **M. Griitzel (Ed.)** *Heterogenous Electron l'kaqtkr,* Pergamon Press, New York **1990.**
- 13. **P.** Hyde, A. Ledwith, *J. Gem. Sot. Perkin 2 1974, 1768.*
- 14. C.K.Grätzel, M.Grätzel, J.Am.Chem.Soc. 1979, 101, 7741.
- 15. A. Juris, V. Balzani, F. Barigelleti, S. Campagna, P. Belser, A. von Zelewsky, Coord. *Chem. Rev.* **1988,** 84, 85.
- 16. K. Kalyanasundaram, Coord. them. *Rev.* **1982,** 46, 159.
- 17. V. J. Mazzola, K. F. Bernardy, R. W. Franck, *J. Org. Chem.* **1967**, 32, 486.
- 18. **E, Laschtuvka, R. Huisgen,** *Chem. Ber.* **1960, 92,** 65.
- 19. Clausen-Kaas, Z. Tyle, *Acta Chem.Scand.* **1952,** 6, 667.
- 20. A. D. Josey, E. L. Jenner, *J. Org. Chem.* **1%2, 27, 2466.**
- 21. **G. C. Porreita, G. Fillacchioni, G. Steancchich, R. Guliio, II** *Fannuco-ed.Sci. 1978, 33 (4), 263.*
- 22. Y. Kawamatsu, H. Suigihara (Takeda Chemical Industries Ltd.), Japan.7404,000 (Cl.C07d), 29.Jan. 1974, App1.6969,152,01 Sep.1969, 3pp.
- 23. M. E. K. Cartoon, G. W. H. Cheeseman, *J. Organomet. Chem.* **1981**, 212, 1.
- 24. **K.** Gewald, E. Schinke, H. Biittcher, *Chem.Ber.* **1966, 99,94.**
- 25. K. Gewald, *Chem. Ber.* **l%S, 98,** 3571.
- 26. R. Bauer, C. Königstein, Z. Naturforsch. 1993, 48b, 461.